Short-term environmental change in a Jurassic lagoon deduced from geochemical trends in aragonite bivalve shells

2001 ◽  
Vol 113 (6) ◽  
pp. 790-798 ◽  
Author(s):  
James P. Hendry ◽  
William T. Perkins ◽  
Tristan Bane
BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Isabella Loughland ◽  
Alexander Little ◽  
Frank Seebacher

Abstract Background Thermal plasticity is pivotal for evolution in changing climates and in mediating resilience to its potentially negative effects. The efficacy to respond to environmental change depends on underlying mechanisms. DNA methylation induced by DNA methyltransferase 3 enzymes in the germline or during early embryonic development may be correlated with responses to environmental change. This developmental plasticity can interact with reversible acclimation within adult organisms, which would increase the speed of response and could alleviate potential mismatches between parental or early embryonic environments and those experienced at later life stages. Our aim was to determine whether there is a causative relationship between DNMT3 enzyme and developmental thermal plasticity and whether either or both interact with short-term acclimation to alter fitness and thermal responses in zebrafish (Danio rerio). Results We developed a novel DNMT3a knock-out model to show that sequential knock-out of DNA methyltransferase 3a isoforms (DNMT3aa−/− and DNMT3aa−/−ab−/−) additively decreased survival and increased deformities when cold developmental temperatures in zebrafish offspring mismatched warm temperatures experienced by parents. Interestingly, short-term cold acclimation of parents before breeding rescued DNMT3a knock-out offspring by restoring survival at cold temperatures. DNMT3a knock-out genotype interacted with developmental temperatures to modify thermal performance curves in offspring, where at least one DNMT3a isoform was necessary to buffer locomotion from increasing temperatures. The thermal sensitivity of citrate synthase activity, an indicator of mitochondrial density, was less severely affected by DNMT3a knock-out, but there was nonetheless a significant interaction between genotype and developmental temperatures. Conclusions Our results show that DNMT3a regulates developmental thermal plasticity and that the phenotypic effects of different DNMT3a isoforms are additive. However, DNMT3a interacts with other mechanisms, such as histone (de)acetylation, induced during short-term acclimation to buffer phenotypes from environmental change. Interactions between these mechanisms make phenotypic compensation for climate change more efficient and make it less likely that thermal plasticity incurs a cost resulting from environmental mismatches.


Author(s):  
Mary Mostafanezhad ◽  
Krisnawati Suryanata ◽  
Saleh Azizi ◽  
Nicole Milne

This chapter critically examines the promise of organic farm volunteering programs such as WWOOF in meeting organic farmers’ need for affordable labor in Hawaii. While organic farm volunteering offers a short term coping strategy for some organic farmers, the cultural logic and rationale that propels these programs perpetuates the underlying labor problems that plague small organic farms. This chapter demonstrates the limitations of organic farm volunteering when utilized as a form of civic participation to drive economic and socio-environmental change.


2005 ◽  
Vol 42 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Douglas G Barton ◽  
Mark VH Wilson

The Eocene Horsefly locality in British Columbia has yielded many fossil fishes, insects, and plants. Its varved sediments make it ideal for study of temporal changes in environment and fish morphology. Several intervals of diatomaceous varves indicate a deep, stratified lake setting. Earlier studies focused on morphological and taphonomic change during the 700-year H2 interval and morphological change during the 10 000-year H3 interval. The present study uses taphonomy as an index for environmental change during the ten millennia represented by H3, comparing taphonomic changes with the morphologic changes found earlier. The H3 interval records deposition in deep water, indicated by dominance of the fish genera Amyzon and Eohiodon. Quiet water conditions are indicated by minimal fin disarticulation. Hypoxia at the time of fish death is confirmed by open mouths of most fish specimens, while cool water on the lake floor prevented full flotation of fish carcasses. Water depth, temperature, and oxygenation fluctuated during H3 deposition. Periods of cooler, deeper, more hypoxic water are indicated by greater numbers and size of Amyzon specimens and by less disarticulation of skull and abdominal bones. Periods of warmer, shallower, more oxygenated waters are indicated by more disarticulation, less fin tetany, smaller fish specimens, and greater diversity of species. Correlations between the taphonomic changes and morphological changes in A. aggregatum are weak. Therefore, the morphological changes are not easily explained as ecophenotypic or short-term evolutionary responses to changes in physical lake conditions.


2016 ◽  
Author(s):  
Tim Coulson ◽  
Bruce E Kendall ◽  
Julia Barthold ◽  
Floriane Plard ◽  
Susanne Schindler ◽  
...  

AbstractUnderstanding how the natural world will be impacted by environmental change over the coming decades is one of the most pressing challenges facing humanity. Addressing this challenge is difficult because environmental change can generate both population level plastic and evolutionary responses, with plastic responses being either adaptive or non-adaptive. We develop an approach that links quantitative genetic theory with data-driven structured models to allow prediction of population responses to environmental change via plasticity and adaptive evolution. After introducing general new theory, we construct a number of example models to demonstrate that evolutionary responses to environmental change over the short-term will be considerably slower than plastic responses, and that the rate of adaptive evolution to a new environment depends upon whether plastic responses are adaptive or non-adaptive. Parameterization of the models we develop requires information on genetic and phenotypic variation and demography that will not always be available, meaning that simpler models will often be required to predict responses to environmental change. We consequently develop a method to examine whether the full machinery of the evolutionarily explicit models we develop will be needed to predict responses to environmental change, or whether simpler non-evolutionary models that are now widely constructed may be sufficient.


2018 ◽  
Author(s):  
Alfredo Rago ◽  
Kostas Kouvaris ◽  
Tobias Uller ◽  
Richard Watson

AbstractAdaptive plasticity allows organisms to cope with environmental change, thereby increasing the population’s long-term fitness. However, individual selection can only compare the fitness of individuals within each generation: if the environment changes more slowly than the generation time (i.e., a coarse-grained environment) a population will not experience selection for plasticity even if it is adaptive in the long-term. How does adaptive plasticity then evolve? One explanation is that, if competing alleles conferring different degrees of plasticity persist across multiple environments, natural selection between lineages carrying those alleles could select for adaptive plasticity (lineage selection).We show that adaptive plasticity can evolve even in the absence of such lineage selection. Instead, we propose that adaptive plasticity in coarse-grained environments evolves as a by-product of inefficient short-term natural selection. In our simulations, populations that can efficiently respond to selective pressures follow short-term, local, optima and have lower long-term fitness. Conversely, populations that accumulate limited genetic change within each environment evolve long-term adaptive plasticity even when plasticity incurs short-term costs. These results remain qualitatively similar regardless of whether we decrease the efficiency of natural selection by increasing the rate of environmental change or decreasing mutation rate, demonstrating that both factors act via the same mechanism. We demonstrate how this mechanism can be understood through the concept of learning rate.Our work shows how plastic responses that are costly in the short term, yet adaptive in the long term, can evolve as a by-product of inefficient short-term selection, without selection for plasticity at either the individual or lineage level.


Author(s):  
Wolf U. Blanckenhorn

Organisms can respond to environmental change by modifying their behavior to obtain an instant response, through short-term phenotypically plastic, often physiological, adjustments, and/or by adapting their life history through a more long-term evolutionary response. Behavioural and physiological responses, in fact, can occur at all these three temporal scales. Examples of behaviors so affected include congregation, dispersal, foraging, migration, or mating. Such responses have consequences at the population and community levels, and ultimately for the evolution of species. This chapter discusses insect examples of these kinds, with an emphasis on human-induced factors, such as (primarily) climate change, pollution, fragmentation, and urbanization.


2021 ◽  
Vol 52 (1) ◽  
pp. 153-175
Author(s):  
Thomas F. Hansen ◽  
Christophe Pélabon

The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.


2013 ◽  
Vol 134 (5) ◽  
pp. 4176-4176
Author(s):  
Natalia Sidorovskaia ◽  
Azmy S. Ackleh ◽  
Christopher O. Tiemann ◽  
Juliette W. Ioup ◽  
George E. Ioup

Sign in / Sign up

Export Citation Format

Share Document